compsci_ai_herk/build n8n ai agents - 8 hr course/_subsections/lesson-01.org

140 lines
2.9 KiB
Org Mode
Raw Normal View History

2025-06-15 20:04:07 +03:00
#+title: Lesson 01 | Course Agenda
2025-06-17 05:55:19 +03:00
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../../_share/media/css/herk.css" />
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../../_share/media/css/org-media-sass/collapsible.css" />
#+HTML_HEAD: <script src="../../_share/media/js/collapsible.js"></script>
2025-06-15 20:04:07 +03:00
* Links
#+attr_html: :class links
- [[../toc.org][TOC | Build n8n ai agents 8 hr course]]
- [[https://www.youtube.com/watch?v=Ey18PDiaAYI][Course Video]]
*** timestamps
:PROPERTIES:
:CUSTOM_ID: timestamp
:END:
#+attr_html: :class playlist
- [[https://www.youtube.com/watch?v=Ey18PDiaAYI][0:00:00 Course Agenda]]
2025-06-17 05:55:19 +03:00
- [[https://www.youtube.com/watch?v=Ey18PDiaAYI&t=103s][0:01:43 AI Agents Simplified]]
2025-06-15 20:04:07 +03:00
* Notes
2025-06-17 05:55:19 +03:00
** course agenda
- no need for code
- walk through step by step builds
- 15 builds
*** course topics
1. ai agents
2. n8n foundations
3. step by step workflows
4. apis & http requests
5. ai agents tools & memory
6. multi agent architecture
7. prompting
8. webhooks
9. mcp servers
- what it is
- hosting setup
10. lessons
** what are ai agents
- what is it at its core
- what can it do
- why do we need them
#+caption: what is an ai agent
#+attr_html: :width 600px
[[../../_share/media/img/compsci/ai/herk/build_8hr/ch01_e01.png]]
*** what it does
- take input
- process input
- get output
*** how to use it
- send the output to a tool
- gmail
- latex
- anything
- when we add an LLM to a tool we get
- ai workflow
- ai agent
*** workflow vs agent
**** ai workflow
#+caption: ai workflow
#+attr_html: :width 600px
[[../../_share/media/img/compsci/ai/herk/build_8hr/ch01_e02a.png]]
***** pros
- reliability
- cost efficiency
- easier debugging and maintenance
- scalability
***** what we are doing
- input
- tools to process input
- call the LLM
- tool chain
- process output before final output
- final output
***** practical example
- hubspot tool
- passes in lead
- perplexity tool
- does research
- LLM
- takes research
- send email
**** ai agent
#+caption: ai agent
#+attr_html: :width 600px
[[../../_share/media/img/compsci/ai/herk/build_8hr/ch01_e02b.png]]
***** how it works
- takes input
- has a set of tools at it's disposal
- uses internal logic to decide what to do
***** disadvantages
- not linear
- expensive
***** when to use it
- if the task is unpredicatable
**** anatomy of an ai agent
#+caption: anatomy of an ai agent
#+attr_html: :width 600px
[[../../_share/media/img/compsci/ai/herk/build_8hr/ch01_e02c.png]]
***** outside features
- input
- LLM
- output
***** in the agent
- brain
- LLM
- anthropic
- gemini
- memory
- long term
- short term
- it won't forget what we need it to remember
- instructions
- system prompt
- differnt than input in that it stays the same
- input changes regularly, ie every interaction you have with chatgpt
- what is your role
- what do you do
- this is what you got to work with