#+title: Lesson 03 | data types #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: * Links #+attr_html: :class links - [[../toc.org][TOC | Build n8n ai agents 8 hr course]] - [[https://www.youtube.com/watch?v=Ey18PDiaAYI][Course Video]] Curr: https://youtu.be/Ey18PDiaAYI?si=OFqJ3CX3m2AHLWdV&t=3270 *** timestamps :PROPERTIES: :CUSTOM_ID: timestamp :END: #+attr_html: :class playlist - [[https://www.youtube.com/watch?v=Ey18PDiaAYI&t=2445s][0:40:45 n8n n8n Data Types]] - [[https://www.youtube.com/watch?v=Ey18PDiaAYI&t=2905s][0:48:25 23 Workflow Templates FREE]] - [[https://www.youtube.com/watch?v=Ey18PDiaAYI&t=2949s][0:49:09 Step by Step AI Workflows]] - [[https://www.youtube.com/watch?v=Ey18PDiaAYI&t=3085s][0:51:25 1) Rag Pipeline and Chatbot]] - [[https://www.youtube.com/watch?v=Ey18PDiaAYI&t=4262s][1:11:02 2) Customer Support Workflow]] - [[https://www.youtube.com/watch?v=Ey18PDiaAYI&t=4926s][1:22:06 3) LinkedIn Content Creator Workflow]] * Notes ** set field - can also name the fields and data type for each field *** data types | data type | symbol | example | |-----------+--------+---------------------| | String | A | "blah" | | Number | # | 50 | | Boolean | ✓ | true | | Array | ☰ | [1, "one", "three"] | | Object | 3d box | {"blah": 33} | ** 3 AI workflows *** 1. RAG pipeline & chatbot **** tools - pinecone :: vector database - google drive :: data storage - google docs :: - open router :: lets us connect to ai models like openai's or anthropics *** 2. Customer support **** purpose - build off prev workflow with pinecone db - respond to customer support related emails **** tools - pinecone - gmail - n8n agent - open router *** 3. LinkedIn Content Creation **** tools - tavily :: search the web - google sheets :: store content ideas, and write content ideas to it ** Workflow #1 - Rag Pipeline and Chatbot *** RAG - stands for :: retrieval, augmented, generation - looks inside database for the answer **** Vector Database - multidimensional graph of points - vector is placed based on meaning of vector - ie, wolf and dog will be close - banana, apple will be close **** how it works - we have a document - break it into chunks - run it through an 'embeddings model' - this puts the chunks into a vector model **** Query - run the query through the embeddings model - see where it lands in vectors, grabs back the nearest 4 or 5 vectors and returns it to us *** process - our trigger is any changes in folder on google drive **** get Google Drive Credentials ***** create OAuth credentials