#+title: Lesson 03 | data types
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
* Links
#+attr_html: :class links
- [[../toc.org][TOC | Build n8n ai agents 8 hr course]]
- [[https://www.youtube.com/watch?v=Ey18PDiaAYI][Course Video]]
Curr: https://youtu.be/Ey18PDiaAYI?si=OFqJ3CX3m2AHLWdV&t=3270
*** timestamps
:PROPERTIES:
:CUSTOM_ID: timestamp
:END:
#+attr_html: :class playlist
- [[https://www.youtube.com/watch?v=Ey18PDiaAYI&t=2445s][0:40:45 n8n n8n Data Types]]
- [[https://www.youtube.com/watch?v=Ey18PDiaAYI&t=2905s][0:48:25 23 Workflow Templates FREE]]
- [[https://www.youtube.com/watch?v=Ey18PDiaAYI&t=2949s][0:49:09 Step by Step AI Workflows]]
- [[https://www.youtube.com/watch?v=Ey18PDiaAYI&t=3085s][0:51:25 1) Rag Pipeline and Chatbot]]
- [[https://www.youtube.com/watch?v=Ey18PDiaAYI&t=4262s][1:11:02 2) Customer Support Workflow]]
- [[https://www.youtube.com/watch?v=Ey18PDiaAYI&t=4926s][1:22:06 3) LinkedIn Content Creator Workflow]]
* Notes
** set field
- can also name the fields and data type for each field
*** data types
| data type | symbol | example |
|-----------+--------+---------------------|
| String | A | "blah" |
| Number | # | 50 |
| Boolean | ✓ | true |
| Array | ☰ | [1, "one", "three"] |
| Object | 3d box | {"blah": 33} |
** 3 AI workflows
*** 1. RAG pipeline & chatbot
**** tools
- pinecone :: vector database
- google drive :: data storage
- google docs ::
- open router :: lets us connect to ai models like openai's or anthropics
*** 2. Customer support
**** purpose
- build off prev workflow with pinecone db
- respond to customer support related emails
**** tools
- pinecone
- gmail
- n8n agent
- open router
*** 3. LinkedIn Content Creation
**** tools
- tavily :: search the web
- google sheets :: store content ideas, and write content ideas to it
** Workflow #1 - Rag Pipeline and Chatbot
*** RAG
- stands for :: retrieval, augmented, generation
- looks inside database for the answer
**** Vector Database
- multidimensional graph of points
- vector is placed based on meaning of vector
- ie, wolf and dog will be close
- banana, apple will be close
**** how it works
- we have a document
- break it into chunks
- run it through an 'embeddings model'
- this puts the chunks into a vector model
**** Query
- run the query through the embeddings model
- see where it lands in vectors, grabs back the nearest 4 or 5 vectors and returns it to us
*** process
- our trigger is any changes in folder on google drive
**** get Google Drive Credentials
***** create OAuth credentials